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We have studied the effect of severl envi-
ronmental chemical.s on the transient
expression of a iol s-
ferase linked tocthe pro-
moter sequen in the long terminal repeat
(LTR) of the human immunodeficiency
virus tpe 1 (HW-1). Aft in B1, 22,37,8-
tetrachlorodibenro-p-dioxn (TCDD; diox-
in) and benzof aprneue a s
increases in CAT expression in mOuse
hepatoma Hepa-1 cells. The induton of
CAT after TCDD trtm ent is abolished by
administrtion of N-acety-L-csteine or 2-
mercaptoethanol ad -does not take place in
a mutant cell line that ladcs CYPlAI enzy-
matic activity. Linker-scanningmu
analsis of t i r bindn sit

in the promoter revealed that bt the
NFicB anda adjacent aromatic hydrocar-
bon response dement (AhRE) are requird
for TCDD-dependent CAT e si. In
addition, mutation of the NFATIAP-l
binding sites in the negative:tajltory
repon of ith mo in :ii
tude of the TCD efct. We conlde that
induction of a functional CYP1Al
monooxygenise by TCDD stimulates a
pathway that thiol-sensiive r-eac-
tive oxygen intermediates which,lJiturn,
are responsibl for the TCDD- t
activation of.- es linked to the:LTR.
These data ifor
findings that TCDD increases inctious
HIV-1 titers ineystems and for
epidemiolo st that expo-
sure to aromatic hydrocarbons, such as
found in cigart smoke, is tdwh
an acceleration in AIDS progresion. Ke
wordn benesofalpyrene, chlomheicol
acetyltransferase, c37, CYPIAI, dioxin,
Hepa-1 cells, HIV-1, TCDD. Environ
Heath Perpect 103:366-371 (1995)

Halogenated aromatic hydrocarbons such as
2,3,7,8 -tetrachlorodibenzo-p-dioxin
(TCDD; dioxin) cause a profusion of
apparently unrelated toxic effects in which
the single common denominator is the aro-
matic hydrocarbon receptor-mediated tran-
scriptional activation of the cytochrome
P450 CYPIAI gene (1-6). In humans,
exposure to dioxin and various other chlori-
nated phenolic agents causes chloracne, a
long-lasting skin disease characterized by
the hyperkeratinization of follicular sebo-
cytes (7,8). In addition, recent long-term

epidemiological studies have established a
link between exposure to high doses of
TCDD and certain types of cancers (9,10).
Dioxin is one of the strongest tumor pro-
moters ever tested in animal model systems;
it causes an elevated incidence of hepatic
carcinoma and pulmonary and skin tumors
(11-13) and promotes tumor formation at
one-hundredth the dose of the classical
tumor promoter 12-O-tetradecanoylphor-
bol-13-acetate (TPA) in the skin of hairless
mice (1416). During rodent embryogene-
sis, TCDD administration also causes cran-
iofacial abnormalities such as cleft palate
and hydronephrosis (17-20). Characteristic
events of secondary palate formation, such
as osteoblast differentiation and synthesis
and mineralization of extracellular matrix,
are inhibited by TCDD (21). Unlike in
whole animal studies, TCDD has no toxic
effect in tissue culture cells, although it
causes a large elevation of intracellular calci-
um, which induces decreased £-adrenergic
responsiveness in cardiac myocytes (22,23),
and causes apoptosis of immature thymo-
cytes (24,25). In this regard, the developing
immune system is a particularly sensitive
target for TCDD, with thymic atrophy
being the most common pathological con-
sequence of exposure (26).

Work from our laboratory has shown
that treatment of mouse hepatoma cells
with polycyclic or halogenated aromatic
hydrocarbons such as TCDD and
benzo[a]pyrene (BaP) causes an increase in
the steady-state mRNA levels of the proto-
oncogenes c-fos, c-jun, jun-B, and jun-D
and the concomitant increase of the DNA-
binding activity of the transcription factor
AP-1 (27). These results suggested the pos-
sibility that other transcription factors
might also be activated by TCDD treat-
ment and that genes which contain bind-
ing sites for these transcription factors in
their regulatory domains might respond to
TCDD or BaP treatment. We tested this
hypothesis in mouse hepatoma cells by
analyzing the effect of TCDD treatment
on the activation of a chloramphenicol
acetyltransferase (cat) reporter gene fused
to the long terminal repeat (LTR)
sequences of the human immunodeficiency
virus-1 (HIV-1).

Materials and Methods
Aflatoxin B1 was a gift of Howard G.
Shertzer, and TCDD was a gift of the
Dow Chemical Company; all polycyclic
aromatic hydrocarbons used were pur-
chased from the National Cancer Institute
Chemical Carcinogen Repository. The
mouse cell lines used in these studies were
the wild-type Hepa-1 hepatoma line (28)
and its CYPlAl metabolism-deficient
derivative, c37 (29-31), a variant that car-
ries two missense mutations in the Cyplal
gene, rendering the resulting enzyme non-
functional (31). These cells were grown in
a-minimal essential media supplemented
with 5% fetal bovine serum.

The bacterial chloramphenicol acetyl-
transferase (cat) gene was used as a reporter
in transient transfection experiments. The
chimeric plasmid pBennCAT, carrying a
fusion of the cat gene sequences to the
HIV-1 U3 LTR was obtained from the
National Institutes of Health AIDS
Research and Reference Program. This
plasmid contains approximately 500 base
pairs of uncharacterized human DNA
sequences (32), which were removed by
standard recombinant DNA techniques,
giving rise to plasmid pHIVLTRCAT.
Several plasmid constructs carrying muta-
tions in the transcription factor binding
sites in the LTR were derived from the
wild-type pHIVLTRCAT by linker-scan-
ning mutagenesis (33). The sequence of
the relevant portion of the U3 LTR is
shown in Figure 1; the sequences that were
replaced indicated by a single overline. In
all cases, 10 or 30 nucleotide residues (1 or
3 helical turns) were replaced by 10
residues (one helical turn), thus preserving
the relative position of the unaffected
binding sites on the DNA helix.
Mutagenesis was carried out by polymerase
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NFAT/AP-l
115 ATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGAGAAGTTAGAAGAAGCCAACAA

NFAT AP-1
185 AGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCGGAGAGAGAAGTGTTA

NFkB __AhRZ
ACTGCTGACATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGG

GACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTG
AP-1

GTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGC

535 TTCGAGATTTTC

Figure 1. Transcription factor binding sites in the human immunodeficiency virus-1 long-terminal repeat.
The sequence shown is from GenBank locus hivhxb2cg. Transcription factor binding sites, indicated by
the overline, were determined using the transcription factor site database (TFSITES) in combination with
the MAP algorithm of the DNA Analysis Package (Genetics Computer Group, Madison, Wisconsin). The
double overline indicates the TATA box; transcription initiation is at residue 547. The three contiguous
Spl binding sites located between residues 376 and 416 are not highlighted.

chain reaction (PCR) of the wild-type plas-
mid using primers complementary to the
flanking sequences of the site to be deleted
and containing a NotI restriction enzyme

site sequence at their 5' end. The PCR
products were digested with NotI, ligated,
and used to transfect electrocompetent E.
coli DH5a. In mutant pLS1, the site
replaced was the composite NFAT/AP-1
binding site located between residues 146
and 165. Mutants pLS2 (NFAT site at

200-230), pLS3 (AP-1 site at 233-243),
and pLS4n (two NFiB sites at 344-374)
were constructed in a similar manner. An
XhoI site was used instead of NotI for
mutant pLS4a (AhRE site at 378-388),
and an XbaI site was used for mutant pLS5
(AP-1 site at 477-487). Double and triple
mutants were constructed from the single
mutants by in vitro recombinant tech-
niques using recombination of fragments
generated by appropriate restriction
enzymes. All constructs were confirmed by
restriction enzyme analysis and DNA
sequencing.

Approximately 10 pg of the appropri-
ate plasmid was transfected by standard
calcium phosphate techniques (34,35)
into semiconfluent Hepa-1 or c37 cells.
In some experiments, to determine the
effect of the viral transactivator Tat pro-

tein (36,37), we co-transfected the cells
with plasmid pCV-1 (obtained from the
NIH AIDS Research and Reference
Program) that expresses HIV-1 Tat under
the control of the SV40 early promoter
and enhancer. We found that Tat expres-

sion increased basal CAT levels and
induced CAT levels by approximately the
same magnitude; all the experiments
reported here were done in the absence of
Tat expression. As a negative control we

used pSVOCAT, containing a promoter-
less cat gene, and as a positive control we
used pSV2CAT, carrying the cat gene
under the control of the SV40 early pro-
moter and enhancer sequences. In initial
experiments, we also used TPA treatment

as a positive control for HIV LTR-depen-
dent expression. To control for variations
due to differences in transfection efficien-
cy, all cultures were co-transfected with
plasmid pCMVggal (CloneTech, Palo
Alto, California), which expresses the bac-
terial f-galactosidase gene under the con-

trol of the cytomegalovirus immediate-
early enhancer and promoter. Expression
of 13-galactosidase under regulation by this
enhancer is independent of treatment to

the cells. Twelve to 16 hr after transfec-
tion, the cells were fed with low serum

(0.1%) a-minimal essential media to

deplete preexisting transcription factors
that respond to stimulation by serum, and
24-48 hr later the cells were treated with
TCDD or other compounds or with an

equivalent amount of dimethylsulfoxide
vehicle. We prepared cell extracts 18 hr
later by three cycles of freeze-thawing,
and expression of CAT and f-galactosi-
dase activities was determined. We mea-

sured CAT activity by the phase extrac-

tion method (38) using 0.2 pCi of
1 C]chloramphenicol (Amersham,
Arlington Heights, Illinois) as the sub-
strate. Chloramphenicol conversion to

acetylated forms was 1-25%, well within
the linear range [0-50% (38)] of the
assay. We determined f-galactosidase
activity using a kit from Promega
BioTech (Madison, Wisconsin). Data
were normalized for differences in trans-

fection efficiency by determination of the
relative amount of chloramphenicol con-

verted to acetylated forms per unit of f3-
galactosidase. Experiments were repeated
at least three times, and the values shown
are the means ± SEM.

Results
We first tested the effect of aflatoxin Bl,
TCDD, and several polycyclic aromatic
hydrocarbons on transient CAT expression
directed by the wild-type HIV-1 LTR.
Mouse hepatoma Hepa-1 cells were trans-

fected with pHIVLTRCAT; 24 hr after

transfection, the cells were treated with the
compounds indicated in Figure 2. Two of
these compounds, aflatoxin B1 and BaP,
caused approximately a fivefold increase in
CAT activity over the dimethylsulfoxide
control. Four others, anthracene,
benzo [a] anthracene, TCDD, and 3-
methylcholanthrene, were next in potency,
causing a two- to threefold increase in
CAT activity. The effects of the last two,
dimethylbenzanthracene (DMBA) and
dibenzo[a,h]anthracene (DBA), were not
significantly different from the control
(Fig. 2). In initial control experiments, we
estimated that the effect of BaP on CAT
expression was approximately 50% of max-
imal activation obtained with TPA (data
not shown).

The HIV-1 LTR is a regulatory
domain approximately 500 bases long that
contains several sequence motifs recog-
nized by cellular transcription factors.
These recognition motifs include binding
sites for AP-1, AP-2, AP-3, AP-4, NFAT-
1, USF, URS, NFiB (39,40), as well as
the TAR sequence, recognized by the viral
Tat protein (3X. The initial rate of provi-
ral transcription is determined by interac-
tions between these transcription factors
and their cognate sequences in the LTR
(36,37,39-42). Since TCDD induces AP-
1 activity (27), one possible explanation for
the stimulation of CAT activity by TCDD
was that it resulted from TCDD-induced
increases in AP-1. Alternatively, CAT
stimulation could be due to activation of
transcription factors other than AP-1. To
address this question and to analyze which
transcription factor binding sites were
responsible for CAT induction by TCDD,
we prepared a collection of single, double,
and triple mutant derivatives of the
reporter plasmid and measured CAT
expression directed by these mutants in
transient expression assays. Mutation of
the proximal AP-1 in LS5 had no effect on
basal expression levels but caused an
increase in TCDD-dependent CAT
expression, whereas mutation of the distal
NFAT and AP-1 sites in LS 1, LS2, and
LS3 had a negligible effect on both basal
and TCDD-induced CAT expression (Fig.
3). Mutation of the NFicB sites in LS4n or
of the cryptic AhRE site in LS4a almost
completely abolished basal and TCDD-
stimulated CAT expression (Fig. 3).
Double mutations caused diverse effects:
LS12 abolished TCDD induction and
increased basal expression slightly, whereas
LS 15 and LS35 showed both elevated basal
expression levels and absence of TCDD
stimulation; LS23 and LS25 had low basal
levels and a TCDD stimulation factor of
6- to 7-fold (Fig. 3 and Table 1). The
LS123 triple mutant exhibited extremely
elevated basal as well as TCDD-stimulated
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Figure 2. Activation of pHIVLTRCAT expression by various foreign chemicals. Forty-eii
transfection, cells were treated for 24 hr with the following compounds: BaP: 10 pM t
DMBA: 20 pM 7,12-dimethylbenzo[alanthracene; BA: 20 pM benzo[alanthracenE
dibenzo[a,h]anthracene; anthracene: 20 pM anthracene; TCDD: 15 nM TCDD; 3-MC: 31

cholanthrene; aflatoxin B1: 100 pM aflatoxin B1; DMS0: dimethylsulfoxide vehicle contro
centration of 0.1%. Stocks of all compounds were prepared as 1000-fold concentrated sol
to ensure that in all cases the DMS0 concentration in the cultures did not exceed 0.10%
chloramphenicol conversion ranged between 3 and 25% and was normalized to B-galactc
The values shown are relative to those of the DMS0 control.
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Figure 3. Effect of TCDD on CAT expression directed by linker-scanning mutants. The dial
shows the approximate position of the mutated sites, with the individual mutations denotE
cle (see Figure 1 for the actual coordinates and the text for a complete description of eac
Relative CAT activity values were determined as indicated in Figure 2.

levels, but the extent of induction was not

significantly different than in the wild-type
(Fig. 3 and Table 1). These results indicate
that the NFicB sites mutated in LS4n are

required for basal and TCDD-stimulated
CAT expression. Furthermore, a previously

unrecognized Ah receptor bin
canonical GCGTG AhRE sit
380 mutated in LS4a, was als4
essential for expression in he
In addition, the region betv
115 and 255 that contains th

Table 1. Induction by TCDD of CAT activity direct-
ed by HIV long-terminal repeat linker-scanning
mutants

Mutant Fold induction"
WT 3.2
LS1 2.8
LS2 3.7
LS3 2.3
LS4n 2.0
LS4a 1.5
LS5 4.3
LS12 1.2
LS23 6.6
LS15 1.3
LS25 6.1
LS35 1.3
LS123 2.1

aThe values shown are calculated from the data
Figure

AP-1 sites appears to dampen the stimula-
tion by TCDD because mutation of these
sites resulted in increased levels of CAT
activity after TCDD treatment. This
region is known to contain negative regula-
tory elements for HIV-1 expression
(39,40). The proximal AP-1 site mutated

ght hours after in LS5 seems to behave in a similar fashion
)enzo[a]pyrene; because its absence increases the effect of
0' DBA: 20 pM TCDD. The values for the fold induction
at a final con- by TCDD for the different mutants tested

lutions in DMS0 are shown in Table 1 and are discussed in
D. The extent of more detail in the next section.
osidase activity. The involvement of an AhRE site on

CAT expression suggested the possibility
that the Ah receptor and a TCDD-
inducible cytochrome P450 CYPlAl
enzyme might participate in the stimula-

10 12 tion of CAT expression observed after
TCDD treatment. We tested this hypothe-

TCDD
sis by comparing the transient expression

TCDD of CAT activity directed by the
Untreated pHIVLTRCAT plasmid in wild-type

Hepa-1 cells and in the c37 derivative that
lacks CYPlAl enzymatic activity. If
C'YPlAl activity were involved in stimula-

tion of CAT expression by TCDD, this

stimulation would not take place in cells
lacking the CYPlAl enzyme. As shown in
Figure 4, this expectation was correct;
stimulation of CAT activity was found at
normal 2- to 2.5-fold levels in Hepa-I
cells, but was absent in the c37 derivative.

These results hinted at the possibility
that oxidative stress mediated by TCDD-

inducible CYPlAl activity could be
gram on the left responsible for the effect of TCDD on
ad by a blue cir- LTR-directed CAT expression. To deter-
:h mutated site). mine whether thiol-sensitive reactive oxy-

gen species were involved in this effect,
pHIVLTRCAT-transfected cells were

iding site, the grown in the presence of various concen-

te at position trations of N-acetyl-L-cysteine (NAC) or 2-
o found to be mercaptoethanol prior to treatment with
patoma cells. TCDD for 16 hr and determination of
veen residues CAT activity. We observed a clear decrease
.e NFAT and of TCDD stimulation of CAT activity
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Figure 4. TCDD-dependent CAT expression in
wild-type and CYPlAl-deficient cells. Forty-eight
hours after transfection, wild-type Hepa-1 cells
and their CYPlAl -deficient variant, c37, were
treated with TCDD or left untreated. The activities
of CAT and 13-galactosidase were measured 24 hr
later. The values shown are relative to the ratio of
CAT/IR-galactosidase activities in untreated Hepa-
1 cells.
with increasing doses of either compound.
At a dose of 1 mM NAC or 20 1iM 2-mer-
captoethanol, the effect of TCDD was
completely abolished (Fig. 5), suggesting
that, indeed, GYPIlAl-dependent oxidative
stress might be responsible for the effect of
TCDD on LTR-directed CAT expression.
Discussion
The results that we present in this article
indicate that TCDD, aflatoxin B1, and
several polycyclic aromatic hydrocarbons
(PAHs) can significantly activate the
expression of genes linked to the LTR
sequences of HIV- 1. The magnitude of the
activation appears to be different for the
various compounds tested. In the case of
TCDD, stimulated values are significantly
higher than control values, although they
do not usually exceed them by more than
2.5- to 3-fold. This stimulation is in agree-
ment with observations by others that
TCDD can cause an increase of infectious
HIV-1 titers in experimental systems
(43,44). As for PAHs, the highest levels of
CAT activation that we observed were a
result of BaP treatment, a finding that may
provide a possible molecular explanation
for the observation that cigarette smoking
accelerates the progression of AIDS
(45--48). It is, of course, likely that the
effect of cigarette smoke on AIDS progres-
sion results from a combination of many
different causes, of which gene activation
by BaP is only one. Surprisingly, DBA had
no effect on CAT expression, a finding
that we cannot explain at present.
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Using linker-scanning mutational
analysis, we have identified several domains
of the HIV-1 LTR responsible for basal as
well as TCDD-stimulated CAT expression.
We find that expression directed by the
HIV-1 LTR is high in mouse hepatoma
cells, in agreement with previous observa-
tions in human hepatoma cell lines
(49-51), this suggests that the liver may be
a primary virus reservoir. Mutation of the
NFICB binding sites eliminates CAT
expression, confirming the absolute
requirement for NFiB. NFiCB, however, is
not the only transcription factor necessary
for expression; we have uncovered an Ah
receptor response element containing the
canonical AhRE sequence GCGTG, which
is also essential for basal expression. In
addition, this site participates in the effect
of TCDD on CAT activation because its
mutation in pLS4a reduces drastically the
fold induction by TCDD (Table 1). This
AhRE site is embedded within the first of
three adjacent Spl sites, which have been
shown to interact cooperatively with
NFPcB in HIV enhancer activation (52). It
could be argued that SpI, and not the Ah
receptor, was the transcription factor
responsible for the loss of activity of pLS4a

because both binding sites would be equal-
ly affected by the mutation. This possibili-
ty is unlikely because mutations in just one
of the three Spi binding sites have little or
no effect on HIV enhancer expression
(40); this suggests that the Ah receptor,
and not Spi, is the relevant transcription
factor whose binding and subsequent activ-
ity are affected by the LS4a mutation. As
shown by the mutagenesis analysis, both
NFicB and Ah receptor binding sites are
responsible for the basal expression levels,
and it is possible that both transcription
factors function in synergy.

The NFAT and AP-1I binding sites in
mutants LS 1, LS2, and LS3, clustered in the
negative reguatory region of the LTR, do
not show a major effect on expression when
altered individually. In double mutants that
include LS 1, as well as in the triple mutant
1.5123, basal level of expression is elevated,
suggesting that the NFAT/AP-1 site at
146-165 is responsible for downregulating
the basal level of expression. This is in
agreement with earlier findings that this
region of HIV-1 contains negative regulato-
ry elements (39,40). As shown in Table 1,
these double mutants and the triple mutant
L5123 also show a low level of induction by
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TCDD, suggesting that the same sites that
downregulate the basal level of expression
may respond to TCDD activation. In con-
trast, mutations at the LS2 site, and possibly
at the LS5 site, cause a significant increase
in the fold induction by TCDD that reach
levels double those of the wild-type (Table
1); this suggests that the role of the LS2 site
is antagonistic to that of the LSI site, having
a dampening effect on TCDD induction
when not modified.

Interpretation of these results must
take into account recent findings regarding
the properties of transcription factor AP-1:
1) different combinations of fos and jun
family members have very different effects
on the same promoter (53); 2) different
promoters respond differently to the same
combination of fos and jun family mem-
bers (53); and 3) fos and jun are integral
components of the NFAT complex (54).
Consequently, sites LS1, LS2, LS3, and
LS5 may have antagonistic roles due to
conflicting effects of free AP- 1 and ofAP- 1
in NFAT complexes on different promoter
sequences. The overall transcriptional
effect of this combination of antagonistic
sites would be rather unpredictable.
Within this context, the outcome of
TCDD exposure is likely to result from a
combination of two opposing effects; on
one hand, activation of expression may
take place by means of the Ah receptor, the
AhRE site, and a particular set of fos/jun
members with positive effects on LTR
expression. On the other hand, dampening
of this induction of expression may occur
by activation of other fos/jun members with
negative regulatory functions.
TCDD toxicity has been proposed to

result from epoxides and other derivatives
of arachidonic acid metabolism catalyzed
by TCDD-induced cytochrome P450
enzymes (23,55,56). In agreement with
this hypothesis, we find that stimulation of
CAT expression by TCDD is absent in the
variant cell line c37 that lacks cytochrome
P450 CYPlAl activity, strongly suggesting
that the effect of TCDD is mediated by
the monooxygenase activity of CYPlAl.
This activity might generate arachidonate
metabolites responsible for the elevation of
the pro-oxidant status of the cell, and
indeed several cytochromes P450, includ-
ing the TCDD-inducible CYPlAl and
CYP1A2 enzymes (57-59) and others
(60,61), possess arachidonic acid epoxyge-
nase activity. Our experiments, although
not directly aimed at the identification of
possible mediators, show that NAC and 2-
mercaptoethanol eliminate the effect of
TCDD, indicating that, as shown for
NFKB activation (62-64), oxidative stress
caused by thiol-sensitive reactive oxygen
species is likely to be involved in the
TCDD-dependent activation events.

In conclusion, our data are consistent
with a signal transduction mechanism that
includes at least two different TCDD-
dependent pathways. On one hand, activa-
tion of the Ah receptor triggers expression
mediated by the AhRE site present in the
LTR. On the other hand, TCDD induc-
tion of a functional CYPlA1 monooxyge-
nase stimulates generation of thiol-sensitive
reactive oxygen species, which in turn acti-
vate transcription factors operative in LTR-
directed expression. We find that, in addi-
tion to TCDD, several other toxic environ-
mental chemicals can activate expression of
the HIV-1 promoter-enhancer sequences,
underscoring the importance that exposure
to these compounds might have in the pro-
gression ofAIDS.
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Aspen Lung Conference
38th Annual Meeting 'Environmental Lung Disease: Exposures & Mechanisms"
June 7-10,1995 in Aspen, CO

This years topic is "Environmental Lung Disease: Exposures & Mechanisms." We will explore the common ground shared
by researchers who study the basic mechanisms of occupational and environmental lung disease and who study the impact
of environmental exposure on human populations.

Topics will include cellular, molecular, immunologic and genetic mechanisms involved in the response to environmental
and occupational toxicants; and the clinical and epidemiologic relationship of inhalational exposure to lung diseases of the
airway and interstitium, including asthma, fibrosis, granulomatosis, and malignancy.

For more information, contact:
Lee S. Newman, M.D., Box C272, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262

Telephone: (303) 270-7767 or FAX: (303) 270-5632.
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